Skillnad mellan versioner av "LaTeX introduktion"
Blueint (diskussion | bidrag) (städning) |
Blueint (diskussion | bidrag) (wikiexempel ; fler exempel i tabellen) |
||
Rad 7: | Rad 7: | ||
\right]_{\mathrm{retarded}} \qquad (1)'''[/tex]''' | \right]_{\mathrm{retarded}} \qquad (1)'''[/tex]''' | ||
Till:<br> | I wikin så blir: | ||
<math>\mathbf{B}(\mathbf{r},t)=-\frac{\mu_0q}{4\pi}\left[\frac{c\,\hat{\mathbf{n}}\times | |||
'''<math>'''\mathbf{B}(\mathbf{r},t)=-\frac{\mu_0q}{4\pi}\left[\frac{c\,\hat{\mathbf{n}}\times | |||
\vec{\beta}}{\gamma^2R^2(1-\vec{\beta}\mathbf{\cdot}\hat{\mathbf{n}})^3}+ | |||
\frac{\hat{\mathbf{n}}\times[\,\dot{\vec{\beta}}+\hat{\mathbf{n}}\times(\vec{\beta} | |||
\times\dot{\vec{\beta}})]}{R\,(1-\vec{\beta}\mathbf{\cdot}\hat{\mathbf{n}})^3} | |||
\right]_{\mathrm{retarded}} \qquad (1)'''</math>''') | |||
:Till:<br> | |||
:<math>\mathbf{B}(\mathbf{r},t)=-\frac{\mu_0q}{4\pi}\left[\frac{c\,\hat{\mathbf{n}}\times | |||
\vec{\beta}}{\gamma^2R^2(1-\vec{\beta}\mathbf{\cdot}\hat{\mathbf{n}})^3}+ | \vec{\beta}}{\gamma^2R^2(1-\vec{\beta}\mathbf{\cdot}\hat{\mathbf{n}})^3}+ | ||
\frac{\hat{\mathbf{n}}\times[\,\dot{\vec{\beta}}+\hat{\mathbf{n}}\times(\vec{\beta} | \frac{\hat{\mathbf{n}}\times[\,\dot{\vec{\beta}}+\hat{\mathbf{n}}\times(\vec{\beta} | ||
Rad 15: | Rad 23: | ||
{| class="wikitable" | {| class="wikitable" | ||
! Inmatning | ! Inmatning || Resultat | ||
|- | |||
| [tex]\sqrt{2}[/tex] || <math>\sqrt{2}</math> | |||
|- | |||
| [tex]e^{i + \pi} + 1 = 0[/tex] || <math>e^{i + \pi}+1=0</math> | |||
|- | |- | ||
| [tex]\sqrt{2}[/tex] | | [tex]\frac{1}{\sqrt{2}}[/tex] || <math>\frac{1}{\sqrt{2}}</math> | ||
|- | |- | ||
| [tex] | | [tex]\int \limits_a ^b f(x)d[/tex] || <math>\int \limits_a ^b f(x)dx</math> | ||
|} | |} | ||
Versionen från 13 maj 2013 kl. 17.03
I forumet så blir:
[tex]\mathbf{B}(\mathbf{r},t)=-\frac{\mu_0q}{4\pi}\left[\frac{c\,\hat{\mathbf{n}}\times \vec{\beta}}{\gamma^2R^2(1-\vec{\beta}\mathbf{\cdot}\hat{\mathbf{n}})^3}+ \frac{\hat{\mathbf{n}}\times[\,\dot{\vec{\beta}}+\hat{\mathbf{n}}\times(\vec{\beta} \times\dot{\vec{\beta}})]}{R\,(1-\vec{\beta}\mathbf{\cdot}\hat{\mathbf{n}})^3} \right]_{\mathrm{retarded}} \qquad (1)[/tex]
I wikin så blir:
<math>\mathbf{B}(\mathbf{r},t)=-\frac{\mu_0q}{4\pi}\left[\frac{c\,\hat{\mathbf{n}}\times \vec{\beta}}{\gamma^2R^2(1-\vec{\beta}\mathbf{\cdot}\hat{\mathbf{n}})^3}+ \frac{\hat{\mathbf{n}}\times[\,\dot{\vec{\beta}}+\hat{\mathbf{n}}\times(\vec{\beta} \times\dot{\vec{\beta}})]}{R\,(1-\vec{\beta}\mathbf{\cdot}\hat{\mathbf{n}})^3} \right]_{\mathrm{retarded}} \qquad (1)</math>)
- Till:
Inmatning | Resultat |
---|---|
[tex]\sqrt{2}[/tex] | |
[tex]e^{i + \pi} + 1 = 0[/tex] | |
[tex]\frac{1}{\sqrt{2}}[/tex] | |
[tex]\int \limits_a ^b f(x)d[/tex] |